import numpy as np
import pandas as pd
import seaborn as sns
%matplotlib inline
tips = sns.load_dataset('tips')
tips.head()
sns.distplot(tips['total_bill'],bins=10)#kde=False)
when dealing with Bi-variate data
sns.jointplot(x='total_bill',y='tip',data=tips, kind='hex')
sns.pairplot(data=tips, hue='sex',palette='coolwarm')
sns.rugplot(tips['total_bill'])
sns.barplot(x='sex',y='total_bill',data=tips, estimator=np.std)
With cumulative count based on 'sex' column
sns.countplot(x='sex', data=tips)
sns.boxplot(x='day', y='total_bill', data=tips, hue='smoker')
sns.violinplot(x='day', y='total_bill', hue='smoker',data=tips, split=True) #)
sns.stripplot(x='day', y='total_bill', hue='smoker',data=tips, jitter=True, dodge=True)
sns.swarmplot(x='day', y='total_bill', hue='smoker',data=tips)
used directly to tweak supporting plot details or add other layers.
sns.factorplot(x='day', y='total_bill', hue='smoker',data=tips)